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ABSTRACT
Flexible cystoscopy is the most common procedure performed by urologists, and thus imposes 

considerable time and financial cost. In this work, we present custom software capable stitching full 3D 
mosaics of the bladder for more expedient examination. The software is part of an automated bladder 
scanning system that includes a miniature (1.5mm OD) flexible endoscope and a computer-controlled 
steering mechanism. The intent of this system is to relieve the urologist of performing surveillance 
cystoscopies while opening avenues for remote interpretation and longitudinal assessment. Unlike other 
approaches that are limited to 2D image alignment strategies, our stitching algorithm computes a 3D 
stitched surface model of the bladder from cystoscopic video using bundle adjustment. The computer 
model can then be reviewed by the urologist post-procedurally at a later time or remote location. Our 
software was tested on cystoscopic video of an excised pig bladder. The resulting reconstruction 
possessed a projection error of 1.66 pixels on average and covered 99.6% of the bladder surface area. The
software was further tested on high definition video from rigid cystoscopy in a patient. Though the 
software was unable to reconstruct a 3D model from, a planar panorama of the posterior bladder wall was 
achieved with an average projection error of 4.45 pixels. Results from this initial investigation 
demonstrate the feasibility of using the 3D image stitching software for virtual bladder examination as 
part of an automated bladder scanning system.   
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1. Introduction
Flexible cystoscopy is the most common procedure performed by urologists in the United States, 

most commonly as part of routine surveillance for bladder cancer. This is due to both the associated 
prevalence (5th among all cancers), and a 50% recurrence rate (Jemal et al., 2010). During the 
examination, the urologist advances the flexible cystoscope through the patient’s urethra into the bladder, 
manually steering the distal tip to inspect the lining of the bladder. Given the limited field of view, 
urologists must methodically maneuver the scope over each region to ensure a complete examination of 
the bladder wall. 

Though flexible cystoscopy is the current gold standard for routine bladder surveillance, there are 
drawbacks for the both the patient and physician.  First, conventional cystoscopes can impose moderate to
severe discomfort in patients who must accommodate scope diameters of 5mm or larger under local 
anesthesia. Though smaller endoscopes are desirable, miniaturization requires reducing the number of 
pixel elements (optical fibers or sensor elements), thereby degrading image resolution and field of view, 
and making cancer detection more challenging. Second, the urologist must carefully examine the entire 
bladder under limited visualization, inspecting for early signs of recurrence.  If a suspect lesion is 
identified, the patient must then be rescheduled for biopsy or resection of the mass during a second 



cystoscopy performed under general anesthesia. These procedures can constitute a significant percentage 
of the urologist’s time and clinical resources. 

Our laboratory has developed a novel ultrathin scanning fiber endoscope (SFE) that may potentially 
transform the current clinical standard in bladder surveillance (Figure 1). Unlike conventional CCD- or 
fiber bundle-based endoscopes, the SFE acquires high resolution images via piezo-actuation of a single 
laser scanning optical fiber housed within a 1.5mm distal tip (Lee et al., 2010; Seibel et al., 2006).  
Because of its small size, the SFE could be more easily tolerated. Furthermore, the small size and 
flexibility make the SFE highly amenable to automation, where it could be mechanically articulated to 
scan the entire inner surface of a bladder (Yoon et al., 2009).   Together, these technological components 
could relieve the urologist of manually performing each and every surveillance procedure. In this new 
approach, surveillance cystoscopies could be conducted with limited oversight by a nurse or ancillary care
provider, allowing the urologist to analyze endoscopic image data post-procedurally, thereby streamlining
clinical workflow. Not only would this promote more efficient interpretation, but it would also present 
opportunities for remote medicine and longitudinal assessment.

Here, we present a 3D image stitching algorithm that is aimed at constructing digital surface models 
of the bladder for expedient review urologists. Though endoscopes provide only a limited field of view of
the bladder, the software stitches the set of images together to generate a full 360° panorama of the 
bladder. Such a panorama would provide full-field visualization of the bladder, creating greater 
anatomical context within which to detect and evaluate disease while compressing lengthy video 
segments into a single 3D stitched surface model. Whereas most panoramic stitching programs can only 
be applied to limited regions of the bladder, the software presented here utilizes structure from motion to 
fully reconstruct the surface of the bladder. Individual video frames are then stitched onto this surface, 
yielding a texture-mapped surface model of the bladder that can be examined in 3D. It is believed that a 
3D bladder panorama will greatly expedite expert examination and provide visual assurance that no 
region was missed. Though this is proposed as part of a new clinical bladder surveillance system, 3D 
mosaics of the bladder may be reconstructed from conventional cystoscopy for maintaining digital 
records of each examination. In the future, such techniques may prove valuable in endoscopy of other 
organs.

Figure 1: SFE imaging of a dime. The rigid distal tip of the highly flexible shaft is 1.5mm OD and 9mm 
in length.



2. Related Work
Panoramic stitching or photomosaicking is the process of combining overlapping images onto a 

common compositing surface to construct expanded views. Clinically, stitching has been used to merge 
multiple fluoroscopic x-ray images (Yaniv and Joskowicz, 2004), breast ultrasound images (Chang et al., 
2010), and endoscopic images of the retina (Seshamani et al., 2006), esophagus (Seibel et al., 2008), 
abdomen (Naya et al., 2009), and bladder (Behrens, 2008). 

2.1.   Cystoscopic Image Stitching
Mosaicking of cystoscopic images provide urologists wide field visualization of the bladder. These 

panoramic views serve as valuable frames of reference in which to navigate the bladder (Behrens et al., 
2011), determine the spatial distribution of multifocal tumors (Olijnyk et al., 2007), and to evaluate 
changes during follow-up examination.  The synthesis of wide field views is also highly beneficial in 
fluorescence imaging of the bladder, which requires the urologist to maintain a short working distance to 
acquire sufficient fluorescence signal (Behrens, 2008). However, current approaches to stitching 
cystoscopic images are limited in that they do not extend to full 360° views covering the entire bladder, as
is desired in our proposed application.  This is primarily for two reasons: first, most panoramic stitching 
applications employ only 2D-2D image alignment methods; and second, stitching is commonly performed
by local rather than global alignment. 

2.1.1. 2D Alignment
The alignment of any pair of images requires some known mapping between a pixel coordinate x in 

one image to a coordinate x '  in the other.  In photomosaicking, such a mapping is frequently calculated 
on the basis of a presumed model of the camera motion and scene structure.  In the construction of flat 
panoramas, the scene of interest is assumed to be planar such that images are related by a common 
homography.  Alternatively, spherical or cylindrical panoramas can be generated from images in which 
the camera undergoes pure rotation, where landmarks lie on a plane at infinity.

In the case of images acquired from a freely moving endoscope within a nonplanar bladder, such 
models are inadequate. However, the bladder surface can be modeled as piecewise planar over a limited 
field of view. Figure 2a depicts a flat panorama of the bladder constructed from a sequence of video 
frames successively aligned for more wide field visualization. Over larger fields of view, the curvature of 
the bladder begins to stretch images as they are added, resulting in a severely distorted map of the bladder
wall (Figure 2b). Furthermore, because the bladder surface is not truly planar, some degree of 
misalignment is introduced between overlapping images. To compensate, multiple local panoramas may 
be constructed from video sequences covering individual segments of the bladder (Behrens et al., 2009), 
or by requiring a predetermined endoscope trajectory (Miranda-Luna et al., 2008).  However, while these 
methods can be used for panoramic visualization, their implementation requires introduces additional 
layers of control that must be moderated by the urologist.

2.1.2. Local vs. Global Alignment
The panoramas of Figure 2a and Figure 2b were constructed using local alignment strategies, where 

for each image I k, we compute the local transformation T k ,k−1 that aligns I k with the preceding image
I k−1. Thus, the global transformation T k that aligns I k with the panorama and I 0 can be easily computed 
as a chain of local transformations where:



T k=T k ,k−1T k−1=∏
i=1

i=k

T i ,i−1 (1)

(a) (b) (c)
Figure 2: Panoramic stitching of cystoscopic video sequences by local alignment. Seven images are 
globally aligned and stitched by computing the local transformation chains T 0−T 7 (a) with a dashed line 
connecting frame centers. Over a longer sequence, added frames begin to distort and stretch due to the 
non-planar bladder surface shape as seen by the transformation T 15(b). When the endoscope motion forms
a loop, overlapping frames at the start and end of the loop are misaligned as a result of propagating local 
alignment errors (c). The misalignment of the transformation T 32 is depicted by the straight dashed lines 
that connect matching features.

Though local alignment produces consistent panoramas over sequences strips such as those in Figure 
2a & b, it is not robust to loops in the endoscope motion path.  Figure 2c illustrates the misalignment that
results from a loop in the motion path between a frame I k and the first frame I 0. This is the result of small
alignment errors that propagate through the transformation chain of (1).  This particular issue, known in 
photogrammetry as gap closure, necessitates some form of global alignment, in which the entire set of 
transformation parameters contained in T 0 through T k are computed simultaneously. This requires that 
the set of transformations T  be optimized over all overlapping frame pairs and not just between 
subsequent frames. Thus significant processing is necessary to both detect all overlapping frame pairs and
optimize, by some iterative means, the entire set of transformations. In applications that require realtime 
stitching, global alignment is not feasible.   Miranda Luna et al. proposed a modified local alignment 
strategy that searches for loops in the endoscope motion path, and once found, redistributes alignment 
error over the entire set of frames (Miranda-Luna et al., 2008). However, to cover the entire bladder, 
multiple sweeps of the bladder are necessary, resulting in a large patchwork of overlapping images that 
must be simultaneously registered by means of global alignment. 

2.2. Structure from Motion
The 2D-alignment methods discussed previously are generally limited to planar compositing surfaces.

To generate a full 3D stitched surface model, the scene geometry must be simultaneously recovered.  
Using tomographic image data, such as computed tomography (CT) or magnetic resonance images, 
endoscopic images can be fused with extracted surfaces of  (Dey et al., 2000; Rai and Higgins, 2009).  



However, in this application, acquisition of a preoperative CT scan is not assumed, nor is this strategy to 
be ideal for the bladder, which lacks distinguishing surface features and is highly distensible.  
Alternatively, given a moving video sequence, scene geometry can be recovered from the image data 
directly. This process, termed structure from motion (SfM), simultaneously reconstructs 3D feature points
along (structure) and camera poses (motion) from a set of 2D images with known correspondences. 

2.2.1. Feature Alignment
Reconstruction of scene and motion parameters is driven by the alignment of  known image 

correspondences. The pixel position x ij is determined by the 3D position of a feature point pi, the pose of 
the camera described by a rotation and translation R j and t j, and the intrinsic calibration parameters K , 
yielding a generic function: 

x ij=f (p i , R j , t j ,K )

The position of a point pi in world coordinates is first converted into relative camera coordinates by a 
rigid 3D transformation, given by:

pij
' =R j pi+t j (2)

The normalized pixel coordinates ( x̂ , ŷ ¿ projected onto the camera at the plane z=1, is calculated as
x̂ ij=p ij

' ( x)/ p ij
' ( z) and ŷ ij=pij

' ( y )/ pij
' (z ). In most instances, the lens of the camera introduces some 

degree of radial distortion, commonly modeled by the nonlinear quadratic:

x̂ '= x̂ (1+κ1r
2+κ2 r

4)
ŷ '= ŷ (1+κ1 r

2+κ2r
4)

(3)

where r=√ x̂2+ ŷ2. The normalized pixel position is finally converted to the pixel position (x , y ¿ in 
image coordinates by the equation:

[ xy1 ]=K [ x̂ 'ŷ '1 ]=[ f x α f x x0
0 f y y 0
0 0 1 ] [ x̂ 'ŷ '1 ] (4)

where K  is the camera calibration matrix constructed from the focal length ( f x , f y ), skew coefficient α , 
and center pixel (x0 , y0 ).

2.2.2. Bundle Adjustment
In the case of the two-view geometry, SfM can be computed directly from linear methods, such as the

normalized 8-point algorithm of (Hartley, 1997). For N-view geometries, where N may represent several 
hundreds or thousands of video frames, such large-scale SfM is resolved through an iterative optimization



process referred to as bundle adjustment. Using this technique, databases of thousands of photographs 
have been used to reconstruct major landmarks for virtual tourism (Snavely et al., 2006).  More recently, 
bundle adjustment has been applied to endoscopic image data to achieve super-resolution panoramas (Hu 
et al., 2010a) and in the reconstruction of organ surfaces (Hu et al., 2010b).  For a more thorough 
discourse of bundle adjustment theory and its applications, we recommend reviews of the subject by
(Triggs et al., 1999) and (Engels et al., 2006). 

The solution produced by bundle adjustment is that which minimizes the measurement error or
pixel projectionerror between the observed pixel positions x and predicted pixel positions ~x  computed 
from (2)-(4).  Figure 3a illustrates the point-camera correspondences that arises from multiple 
observations of features.  Defining the pixel projection error z ij=x ij−~xij, where z is a vector containing 
the error of every observed point-camera pair, a cost c can be computed as the sum of squared errors.  

c=1
2
zT z (5)

This cost can be defined as a function c (x ), where x is a state vector containing the entire concatenated 

list of point and camera parameters, given by x=[ p1T ,…, pMT ,ω1T , t1T… ,ωN
T , tN

T , f x , f y , u0 , v0 , κ1 , κ2 ]
T
. 

Here, the rotation matrix R describing the camera orientation is replaced with an orientation vector ω 
computed from the Rodrigues rotation formula.  Locally modeling the cost function by the quadratic 
Taylor expansion,

c ¿ (6)

the update Δ x that minimizes c ¿ is given by the nonlinear least-squares solution:

H Δ x=−g (7)

where g is the gradient and H  is the Hessian matrix of c (x ). Both can be expressed in terms of the 
Jacobian J  of the measurement error z, where

J=[
∂z1
∂ x1

⋯ ∂ z1
∂xn

⋮ ⋮ ⋮
∂ zm
∂ x1

⋯
∂ zm
∂xn

] , g=Jz ,H ≈ JT J
By solving for Δ x  from Error: Reference source not found, the structure and motion parameters are 
refined iteratively, where x i+1=x i+Δ x , recomputing Hand g at each update. Considering the state vector
x can contain several thousand parameters, solving for Δ x   is not straight-forward. However, the system 
of equations in (7) can be broken into its point and camera based constituents, yielding:



J= [J p Jc ] ,H=[H pp H pc

H pc
T H cc ]=[J pT J p J p

T J c
J c
T J p Jc

T J c]
producing the sparse banded matrix seen in Figure 3b&c. Conveniently, the diagonal structures of H pp 
and H cc are easily inverted, allowing reformulation of (7) to a reduced camera system:

H cc Δ xc=−gc (8)

where H cc is the Schur Complement, computed as H cc=H cc−H pc
T H pp

−1H pc, and gc=H pc
T H pp

−1gp−gc.
The update to the camera parameters Δ xc is then used to compute the update to the point parameters:

Δ x p=H pp
−1gp−H pp

−1H pc Δ xc (9)

The solutions produced by (8) and (9) are unique to bundle adjustment problems in that very large 
systems of equations, potentially containing thousands of points and cameras, can be solved by leveraging
sparsity introduced by two sources. First, structure from motion is a bipartite problem in which structural 
and camera parameters do not combine. Put another way, each measurement projection error z ij is the 
result of only one point iand one camera j.  Second, in most cases, each camera sees only a small subset 
of the total number of feature points. Lastly, to ensure that each adjustment produces an improved 
estimate of x, step control is implemented in the form of the Levenberg-Marquardt algorithm, where (7) 
is rewritten to include a variable weighting factor λ:

(H+λ diag(H ))Δ x=−g (10)

(a) (b) (c)
Figure 3: An example of camera and point correspondences are illustrated over a small surface patch in 
the bladder (a). The resulting correspondences produce a sparse Jacobian matrix (b) containing the 



derivatives ∂ z /∂x , where each entry denotes the track-camera pair pi , c j. The Hessian matrix H=J T J  
(c) contains the Gauss-Newton approximations to the second derivatives of the cost function c. The 
strictly point-based and camera-based matrix entries are signified by the blue and green regions, 
respectively.

3. 3D Surface Stitching of Cystoscopic Video

3.1. Cystoscopy of an Excised Pig Bladder
SFE imaging was conducted in an excised pig bladder (Figure 4a). Following resection, dye was 

injected into the two main arteries that feed the two hemispheres of the bladder to maintain vessel contrast
during cystoscopy. Red dye was injected into one artery and blue dye into the other. The bladder was then
fixed in formalin and suspended within a jar. An access port was inserted into the jar lid and attached to 
the bladder to allow for direct introduction of the SFE. To achieve a full 180° bend angle, the SFE was 
tethered to a rigid introducer tube (Figure 4b). The jar and bladder were then placed on a rotating stage. 
Images were acquired in a spiral path as the SFE was slowly extended to bend back toward the bladder 
neck (Figure 4c).  A frame grabber was used to save cystoscopic images to a Dell 470 Precision 
Workstation (3.40 GHz CPU, 4GBytes RAM) for further processing. Because video was taken from 
inside a dyed pig bladder using our SFE, acquired images (depicted in subsequent sections) do not closely
resemble those from conventional cystoscopy in a patient. 

             (a) (b)                       (c)
Figure 4: A pig bladder was excised and fixed in formalin (a). To maintain vessel contrast, arteries 
were separately injected with red and blue ink. Cystoscopy of the bladder was performed using the 
SFE. To achieve 180° back bending, the SFE was tethered to a rigid insertion tube (b). A spiral scan 
path (c) was used to image the entire inner surface of the bladder.

3.2. 3D Surface Stitching Software
Figure 5 outlines the processing steps of the custom panoramic stitching software. The code was 

completely developed in MATLAB for the reason that it provides support for sparse matrices, which is 
critical to bundle adjustment. Moreover, it contains functions for reading video files and image 
processing. The pipeline is broken into two stages: frame analysis and 3D reconstruction. For each image 
features are detected and characterized for each video frame as the basis for pairwise frame matching. 
From the total number of frames, a sparse subset of frames are selected to eliminate redundancy and 



economize on processing time.  From this collection of frames, a sparse global match search is conducted 
to identify all overlapping frame pairs. Image features that are consistently matched between all frames 
are identified as 3D tracks. From the set camera frames and surface points, structure from motion is 
resolved incrementally through non-linear least squares using bundle adjustment. From this 
reconstruction, we compute an explicit model of the bladder surface and finally stitch the individual 
images onto the surface and blending overlapping regions.  Each stage of the 3D stitching software is 
described in conjunction with results from processing of the SFE cystoscopy of the excised pig bladder.

Figure 5: The 3D surface stitching software pipeline

3.3. Feature Detection/Description
The endoscopic video consists of several hundreds or thousands of frames that overlap as part of a 

comprehensive and consistent image patchwork covering the entire inner surface of the bladder.  To 
accurately construct a full stitched surface model, overlapping frames must be matched. These frame 
matches are established through the correspondence of a discrete set of features. For each video frame, a 
set of scale- and rotationally-invariant features are detected using the well-known scale-invariant feature 
transform (SIFT) (Lowe, 2004). This is implemented using the VLFeat toolbox (www.vlfeat.org) 
available for MATLAB, whose modified SIFT detection function takes an image as input and returns a 
set of features as in Figure 6a. Because SIFT features are computed from grayscale images, only the 
green image channel is used as input from the SFE video frames as appears to contain the best contrast for
blood vessels.  Each feature is characterized by a keypoint  x=(x , y ) in pixel space and by a 128-element
description vector D. Conveniently, these features combine to help identify corresponding image regions,
and constitute discrete 3D feature points from which the bladder surface shape is reconstructed. 
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(a)

(b) (c)
Figure 6: Alignment of two overlapping video frames acquired from the SFE inside an excised pig 
bladder. SIFT keypoint features are first detected in both images and characterized by a description vector
D (a). Features are then matched on the basis of the separation distance in feature space (b) as shown by 
the connecting green lines.  Matches are finally pruned by RANSAC leaving only those feature matches  
that are related by a common homography as shown by red lines (c).

3.4. Local Frame Matching
To begin the frame matching process, each frame is first matched to the subsequent frame. Though 

local alignment of sequential images can be computed from direct comparison of pixel intensities
(Hernandez-Mier et al., 2010) or mutual information (Miranda-Luna et al., 2008), such methods are more 
computationally exhaustive. Alternatively, feature-based frame matching is achieved in two steps: feature
matching and pruning by RANdom SAmple Concensus (RANSAC). In attempting to match a pair of 
frames I↔ I ' , the features themselves are first compared by computing the Euclidean distances

‖Di−D j
'‖ for each possible feature pair (i , j). A pair (i , j) is determined to match if both are mutual 

nearest neighbors separated by a distance dnn=‖Di−D j
'‖ in feature space, and if

d2nn
dnn

>ϵ

where d2nn is the second nearest neighbor distance of either feature and ϵ  is a predetermined threshold 
greater than 1 (Figure 6b).

For local matching of sequential frames, rigorous calculation of every possible feature pair is not 
necessary. Rather, each feature is compared only to those features falling within a limited subregion of 
the two images. This more expedient approach, known as guided matching, leverages the fact that the 
endoscope undergoes only limited motion between subsequent frames, and thus displacement of features 



can be presumed to be small. Here, we impose a maximum displacement equal to 25% of the frame width
for local matching of sequential frames.

In the second step, a geometric transformation function T  is computed from the spatial arrangement 
of the matched features such that x '=T (x). Because not all matches are consistent with a single 
transformation, T  is computed on the basis of the greatest number of inliers arising from RANSAC 
(Figure 6c).  For this application, the transformation relating matched feature keypoints x↔ x '  is 
modeled as a planar homography H , such that

[ x ' ωy ' ωω ]=H [ xy1 ]=[h11 h12 h13
h21 h22 h23
h31 h32 1 ] [ xy1 ]

Finally, the total number of feature matches or inliers determine the validity of the frame match I↔ I ' . 
Here, we use a minimum of 16 feature matches to establish frame overlap. 

3.5. Frame Selection
To minimize processing time, only a subset of n images I 0 to I n−1 are selected from the total number 

of video frames I v.  For greater expediency, selection is performed concurrently with the local matching 
algorithm of 3.4. For each video frame I k

v selected, the image is added at I n, where n is the number of 
frames selected thus far, and k  is added to a vector k  that holds the video frame indexes of each frame 
selected. The frame selection process then continues through the following steps:

Step 1: Initialize selected frames I 0=I 0
v , I 1=I 1

v and index vector k=[01]. Also initialize n=2, k=2
, and Δ k=1.

Step 2: Read the new frame I k
v.

Step 3: Attempt match with second to last selected frame I n−2↔I k
v. If a match is found, replace the 

last selected frame by setting I n−1=I k
v and k n−1=k , then GOTO 7.

Step 4: Attempt match with last selected frame I n−1↔I k
v. If a match is found, add I n=I k

v and k n=k , 
increment n and GOTO 7.

Step 5: No match was found. If Δ k=1, this is already the smallest interval, so continue with the next
frame. GOTO 8.

Step 6: Halve the interval by stepping back,  k=k−Δk  and then halve Δ k and GOTO 8.
Step 7: Update the frame interval so that Δ k=kn−1−kn−2
Step 8: k=k+Δk
Step 9: If k ≤ the total number of video frames, GOTO 2

3.6. Global Frame Matching
To suitably stitch a full panorama of the bladder, it is necessary to perform some global alignment of 

the entire collection of frames by way of a common set of visible features. Global alignment at this level 
requires frame matching over the entire set of images.  Considering the total number of selected frames n 



is commonly on the order of several hundred or thousand, the total number of possible frame matches is 
calculated as (n¿¿2−n)/2¿. To avoid an exhaustive global search of every possible frame pair, we 
institute a more economical approach that uses a sparse match search in three stages: sequential, 
nonsequential, and associated frame matching. 

(a)
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Figure 7: The three global frame matching stages are illustrated in examples (a-c) and on the match table
M (d). First each frame is sequentially matched to as many preceding frames as possible (a). Following, 
the software searches nonsequential matches of frames that are not sequentially linked and are separated 
by some minimum number of frames.  For each nonsequential match, recursive neighbor matches are 
sought, exposing large seams of frame overlap as illustrated by the first off-diagonal in green (d).  An 
associated match search identifies matches between frames that mutually overlap a third frame (c). This 
uncovers additional seams of overlap as shown by the second off-diagonal in blue (d).

Following frame selection, the software possesses a set of several hundred or more video frames, 
each one locally matched to the subsequent frame. A sparse n×n match table M  is first constructed to 
store the match data between any such pair of frames (Figure 7d). In the first step, each frame is matched
sequentially to as many preceding frames as possible until a match fails (Figure 7a). This creates the 
main diagonal of the match table in M . In the second step, the software searches for nonsequential 
matches I j↔I k, defined as frames that overlap as a result of loops in the motion path of the endoscope 
(Figure 7b). Programatically, these matches are determined by frames which are not matched 
sequentially and are separated by some minimum number of frames. We use a minimum separation of 10 
frames to define a nonsequential match.  Such a match can also serve as a seed around which additional 
frame matches can be located. For a nonsequential match I j↔I k, the software additionally tests for 
potential neighbor matches I j−1↔I k , I j+1↔I k , I j↔I k−1, I j↔I k+1 .  Additional neighbor matches are 
recursively tested, eventually uncovering large seams of overlap between “sweeps” of the endoscope 
represented by the first off-diagonal section in the match table M . This recursive neighbor search is 



further expedited using guided matching techniques.  Once a seed match I j↔I k is identified, it is 
possible to pre-estimate the alignment of a candidate neighbor match (I j−1↔I k for example) given by 
the homography H j−1 , k=H j ,k H j−1 , j, where H j ,k and H j−1 , j are already known. From this pre-estimate 
of the alignment, a more economical subsearch of matching features can be conducted on the basis of 
keypoint location. 

In the final step of the sparse match search, termed associated frame matching, the software further 
attempts to match any pair of frames associated by mutual overlap with a third frame (Figure 7c). Thus 
for any match I j↔I k, each frame I i for which there is also a match I i↔I j, is considered a possible 
match I i↔Ik by association.  This process further exposes regions of frame overlap in M .

3.7. Track Assignment
To this point, the processing stages have involved characterization of individual frames and 

subsequent pairwise matching. To initiate a global reconstruction of scene and camera geometries, a set of
features consistently matched over multiple frames must first be extracted. These features, referred to as 
tracks provide the basis of the 3D surface geometry around which the bladder is ultimately shaped.  For 
each frame I k, each feature x ik is analyzed for possible feature matches in any previous frame. If this 
feature is not matched in a previous frame, it is assigned to a new track point x ik↦ pm, where m is the 
label index of the last and newly added track point p. If x ik is matched to a feature xhj in a previous frame
I j then x ik is assigned to the track pl where xhj↦ pl. In the event x ik matches to several features assigned 
to different tracks, those tracks are deleted and the associated features are disregarded.  In this 
implementation, any track viewed less than three frames were removed from the reconstruction.  

3.8. Incremental Bundle Adjustment
As with most large-scale optimization problems, bundle adjustment progresses toward a local 

minima, and thus requires proper initialization for accurate scene reconstruction. Given the number of 
variables, bundle adjustment is most commonly approached in an incremental fashion, beginning with 
only a small set of cameras and tracks to initialize the reconstruction. As structure and camera parameters 
are resolved, additional cameras and tracks are slowly added, effectively building up a model of the scene
and camera geometry over time. For many applications, the bundle adjuster is initialized using two 
matched frames separated by a sufficiently large baseline distance from which to derive the rigid 3D 
transformation (up to a scale factor) that relates them (Snavely et al., 2006).

In our approach, the reconstruction leverages the fact that the bladder is continuous and enclosed, and
presumed to lack any hidden surfaces. Thus, for simplicity, the bladder is approximated as a sphere in the 
initial reconstruction stage as described in previous work (Soper et al., 2011). Thus each track point is 
constrained to lie on a sphere with a unit radius. Similarly, each camera position is restricted to lie with 
the spherical surface. This constraint is easily implemented by reparameterizing the Jacobian in terms of 
the 2D spherical coordinates (θ ,ϕ ).  The benefit of such a constraint is that it helps to stabilize the 
reconstruction until it is fully formed. If the geometry is left unconstrained, tracks and cameras on the 
could warp and flex around gaps in the model, likely allowing the optimization to deteriorate to a false 
local minima. 

Error: Reference source not found illustrates the incremental bundle adjustment over multiple 
passes. The process begins with a single active camera, arbitrarily placed in the center of the sphere
(0,0,0) pointing in the z direction.  Following, tracks and cameras are added to the reconstruction in 



alternating fashion. In odd passes, tracks that are visible to any of the active cameras are added. The 
position p of any track is estimated by projecting the associated feature pixel of each camera in which 
they are viewed to the surface of the sphere and averaging. In even passes, cameras which contain five or 
more active tracks are activated. Their initial pose is estimated using the 5-point algorithm of Quan & Lan
(Quan and Lan, 1999). After activating addition tracks or cameras, bundle adjustment of the subset of 
track and camera parameters is iteratively conducted until fully minimizing the cost of (5). In this way, 
additional cameras and tracks are infused in a hand-over-hand method, reoptimizing at each step, until 

every possible camera and track has been inserted into the reconstruction.  Once the spherical model is 
fully reconstructed, the spherical constraint is removed and bundle adjustment is rerun one final time, 
allowing full three-dimensional restructuring of the track points (Figure 10a).  Because each camera and 
track is well anchored into an overlapping patchwork, unconstrained 3D bundle adjustment progresses 
toward a more accurate model of the bladder surface. 

3.9. Surface Fitting
The reconstruction from section 3.8 yields a set of track points that describe the shape of the bladder. 

Ultimately, a surface S must be extracted upon which the individual frames can be mapped and stitched 
together. Though the surface is not constrained to be spherical, S is parameterized in spherical 
coordinates, such that radius r  is given by a function r=r (θ ,ϕ ).  It should be noted that this model 
implicitly assumes that every point of the bladder surface is visible from the sphere center (Figure 9a), 
and will not suffice in situations where S contains hidden surfaces (Figure 9b). Before surface fitting, an 
initial filtering of the track points is performed to reduce noise from outliers. This is done by median 

Figure 8: Several passes of the spherically constrained incremental bundle adjustment are depicted. The 
reconstruction is initialized to a single camera assumed to lie at the sphere origin and the set of tracks 
visible to this camera. In even passes, new cameras which view 5 or more of the active tracks are added to
the reconstruction (shown in yellow). In odd passes, tracks visible to active cameras are added (red).  In 
the beginning, the reconstruction appears nearly planar as little shape can be derived from only a few 
frames. As camera frames are added, shape and motion begin to emerge. Though stitching is not 
performed until the final stage, it is included here in to convey the incremental reconstruction process.
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filtering of the radius r  of each track’s five nearest neighbors in 2D spherical coordinates θ ,ϕ (Figure 
10b).  

(a)                                                        (b)
Figure 9: The bladder surface S is modeled by a 2D spherical function r (θ ,ϕ), in which each surface 
point is directly visible to the origin at O (a). However, a 2D surface model is insufficient in a case where
portions of the surface are hidden (b).

The surface Sis explicitly defined in a three-dimensional space S(θ , ϕ , r ). To construct a surface 
from the point cloud of tracks points, a smoothing thin-plate spline (TPS) is used to estimate the radius
r (θ ,ϕ) over spherical grid coordinates (θ ,ϕ ).  Because computation of a TPS increases with the number 
of points, each grid point of the surface is locally computed using only a subset of track points that 
spatially inhabit that region of the surface.  TPS surface estimation was performed using the MATLAB 
curve fitting toolbox with a smoothing tolerance of 0.5.

(a) (b) (c)
Figure 10:  Unconstrained surface reconstruction of the pig bladder yields a 3D point cloud (a).  Noise in 
the reconstructed track points is mitigated by median radial filtering of nearest-neighbors (b). From the 
filtered points, a smooth surface contour S is explicitly defined using localized smoothing TPS (c).

3.10. Stitching
The process of stitching involves mapping each video frame onto the composite surface S and 

subsequently blending images together to create a smooth image of the bladder.  First, a 2D panoramic 
image I p  is initialized, for which each pixel (x p , y p) maps linearly to a point in spherical coordinates ¿). 



The pixel value  I p(x p , y p) is then computed as a weighted contribution of each frame that contains
(x p , y p), such that:

I p (x p , y p )=
∑
k
w ( x , y )⋅ I k (x , y )

∑
k
w (x , y )

where the mapping between any point (x p , y p) in the panorama and a point (x , y ) in any image is 
computed from (2)-(4). Here, we apply center weighting of the image such that w (x , y ) is inversely 
proportional to the distance of (x , y ) from the image center (Szeliski and Shum, 1997),  thus 
preferentially weighting the more central regions of each image frame, where there is higher contrast, and
surface features are under more direct lighting. For pixels that fall outside the active field of view of the 
scope, w  is set to 0.

4. Results

4.1. Excised Pig Bladder
Over 8,000 video frames comprised the cystoscopic video. From these the software selected 1,061 for

analysis. From these a total of 7,797 frame matches were detected between frames, resulting in a total of 
10,464 tracks.  Through incremental bundle adjustment, a total of 922 frames and 9,954 tracks were 
inserted into the reconstruction. Frames which did not contain at least 5 tracks and tracks that were not 
visible to at least 2 cameras were excluded from the model.  Following the spherically constrained 
reconstruction, the mean projection error was 1.92 ± 1.22 pixels.  After unconstrained reconstruction the 
projection error was reduced to 1.66 ± 1.08 pixels. After fitting a smooth surface to the track points, the 
mean error between the points and surface was 0.02  ± .04.  This error is dimensionless for the reason that
SfM can only be determined up to a scale factor.  Because the bladder is initially constructed on a unit 
sphere, the radius following unconstrained bundle adjustment is close to one. Thus the error of the surface
fit can be interpreted as approximately 2% of the bladder radius ( 1mm). Figure 11 presents 
unfolded views of the 3D stitched surface model of the bladder for each pair of hemispheres.  For expert 
evaluation, the reconstructed bladder can be displayed as single 3D surface in Figure 13. The stitched 
surface further provides validation of a complete scan of the bladder, covering 99.6% of the bladder 
surface area. Only a small hole is apparent at the neck of the bladder through which the SFE is inserted.

To evaluate the diagnostic quality of the panorama, individual video frames were synthesized by 
resampling the stitched surface model from the computed camera poses. Figure 12 compares three 
example frames take from the raw cystoscopic video compared to the corresponding synthesized views. 
The synthesized frames appear to be slightly blurred relative to the raw cystoscopic video, diminishing 
the finer vessel detail. However, lighting artifacts arising from specular reflections of the surface or 
floating particles are greatly suppressed. 



Figure 11: Unfolded views of the 3D stitched surface model of the excised pig bladder by hemisphere.



                                 (a) (b)                    (c)

            (d) (e)                    (f)
Figure 12: Cystoscopic images (a-c) acquired by the SFE in the excised pig bladder are synthesized from 
the stitched surface model and prescribed camera locations (d-f). The synthesized frames are blurred, but 
suppress artifacts related to lighting variation such as specular reflection.

Figure 13: The fully reconstructed 3D model of the excised pig bladder. Individual full resolution video 
frames can be visualized as overlays on the model and magnified to retain detail for later interpretation by
an expert.

4.2. Rigid Cystoscopy
The custom 3D stitching software was tested on cystoscopic video acquired from a routine rigid 

cystoscopy of a patient at the VA Hospital in Seattle, Washington. The procedure was performed using a 



21F rigid cystoscope (Olympus, Tokyo, Japan). High definition video was recorded to the processor unit 
and converted to an MPEG file. From a video sequence containing 8,275 frames (4.6 minutes), a total of 
449 frames were selected. From this, 220 frames were incorporated into the reconstruction (Figure 14a).  
The mean projection error was 4.45 ± 3.09 pixels.

The stitching was fairly accurate and produced a visually well aligned panorama. The somewhat 
increased pixel projection error over that achieved with the pig bladder experiment is largely owed to the 
increased image size. Unfortunately, because the rigid cystoscope is rotationally constrained, a full 3D 
reconstruction was not possible. While the “head on” images of the posterior wall of the bladder could be 
accurately aligned into the planar reconstruction of Figure 14a, matching of frames acquired at glancing 
angles of the sidewalls was limited. Figure 14b depicts a frame that approaches the sidewall of the 
bladder and which also contains a notable feature correspondence in the panorama. However, as frames 
are acquired from more glancing angles, such as Figure 14c, the frame to frame matching process begins 
to fail. Two main factors are associated with this breakdown. First, the frame to frame matching process 
presumes that local alignment of two frames can be achieved by planar homography. However, frames 
such as Figure 14c contain a number of non-coplanar features, and thus do not abide by the local 
alignment model. Second, frames acquired close to the bladder wall present greater artifact from 
overexposure, which effects quantitative description of key image features. 

(a)

(b)

(c)

Figure 14: Stitching results from rigid cystoscopic video on a planar map (a). A good  
reconstruction of the top hemisphere of the bladder is achieved. However, around the 
fringes, glancing angles of the sidewalls make alignment more difficult and introduce 
greater artifact caused by overexposure. The red arrow illustrates a shared feature in the 
panorama and two frames (b&c). While the frame in (b) is incorporated into (a), feature 
matching fails with the frame in (c) due to the skewed perspective and lighting variation. As 
a result, it is omitted from the reconstruction.



5. Conclusions
In this work, a novel 3D stitching algorithm is presented that utilizes SfM by bundle adjustment to 

reconstruct cystoscopic video into a 3D stitched surface model of the bladder. This model is solely 
acquired from video of the procedure and does not require supplemental image data or foreknowledge of 
the particular endoscope used or its intrinsic properties. Using cystoscopic video acquired from an excised
pig bladder with the SFE, a pixel projection error of less than 2 pixels was achieved, covering 99.6% of 
the bladder. This demonstrates adequate alignment of images into a single consistent patchwork and the 
reconstructed shape provides validation that no region was missed. Although there is some loss of feature 
detail as illustrated in Figure 12d-f, visualization could be supplemented with overlays of the native 
video frames (Figure 13b&c). A user interface could allow an urologist to easily switch between dual 
levels of detail as part of the examination.

While the pixel projection error provides a valuable metric by which to measure consistency of the 
reconstruction, the lack of a gold standard limits any true evaluation of the reconstruction accuracy.  This 
is due to the fact that the actual bladder shape and endoscope motion are unknown. Ultimately, accurate 
reconstruction is not assumed to be essential for expert evaluation. Rather, the model serves as visual 
validation of complete surveillance and permits wide-field examination of the entire bladder. Thus, full 
3D reconstruction of the bladder surface is more useful as a means of improving feature alignment and 
overall stitching quality than divulging actual bladder shape. Despite this, simulated endoscopy of virtual 
bladder models produced highly accurate reconstructions in previous work (Soper et al., 2011), and may 
prove to be of value in detecting abnormalities in the surface topology of the bladder. However, unlike the
simulated endoscopy experiments, inconsistencies due to lighting, deformation of the bladder, and image 
distortion may preclude highly accurate surface reconstruction, and should be investigated further.

The software was also tested on video acquired from a patient undergoing rigid cystoscopy.  This 
produced only a partial stitched surface model with a pixel projection error of 4.45. The limited 
reconstruction is the result of difficulty in matching images of the sidewalls taken from a skewed 
perspective using our software. Some of these limitations could be overcome by implementing a local 3D 
alignment algorithm through computation of the fundamental matrix, such as the normalized 8-point 
algorithm (Hartley, 1997). The only drawback of such a method is that it requires a greater number of 
correct feature correspondences for RANSAC, which has considerable impact on the overall processing 
time.  However, image artifacts, such as those created by overexposure when the light source is close to 
the sidewall cannot be eliminated. Furthermore, the motion of a rigid endoscope is largely restricted such 
that many features are only peripherally visible. Because rigid cystoscopes are not able to retroflex to 
obtain critical internal views toward the neck of the bladder, image gaps prevent the software from 
assembling the video into a 3D model or quantitatively ascertaining how much of the bladder is unseen. 

 Despite this, the matching of frames and subsequent reconstruction is greatly aided by using the SFE 
as compared to a rigid cystoscope. First, because SFE images are constructed by scanning of focused 
laser light, overexposure is eliminated so long as some small distance is maintained between the SFE and 
bladder wall. Second, the scan trajectory achieved using the SFE (Figure 4c) permits imaging over a full 
bend angle of 180°. This allows the SFE to capture images of the surface over a full 360° field of view 
and at orientations that are nearly normal to the bladder surface. 

Panoramic stitching of cystoscopic video is heavily reliant on adequate operation of the endoscope. 
First, comprehensive coverage of the bladder is essential.  In the event that major portions of the bladder 
are not visualized, many of the reconstructed feature points and camera locations will be under-
constrained, leaving large gaps in the model. Second, because reconstruction is driven by matched 



features, considerable overlap between frames is critical. Using the spiral scan trajectory in Figure 4c, 
subsequent spirals should ideally overlap by 50%.  With diminishing overlap, feature matching becomes 
increasingly more difficult. This underscores the need for controlled steering of the SFE, which is the 
subject of an ongoing research project. Instituting machine controlled steering of the SFE would also 
provide a valuable estimate of the scope pose at each frame, which could greatly diminish time required 
by the software (currently around 20 minutes) to merely a few minutes.

This initial investigation substantiates use of 3D surface stitching software in conjunction with SFE 
technology as a potential means of automating bladder cancer surveillance. Further work is required to 
show that this software, married to our miniature endoscope and automated steering mechanism is 
sufficiently robust to produce full surface reconstructions under various clinical conditions. Specific 
challenges include poor visualization due to bleeding or debris in the urine, abnormal bladder shape, or 
lack of feature detail to instruct matching of frames. Furthermore, a user-interface must be developed to 
allow the urologist to efficiently navigate the stitched surface model.  To guard against failed 
reconstruction using this software, the native video could be accessible within the user-interface for 
immediate reference. 
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